ABDK
CONSULTING

PROPOSAL
SMART CONTRACT AND
CIRCUIT AUDIT

abdk.consulting

AUDIT CONCLUSION

by Mikhail Vladimirov and Dmitry Khovratovich
20th March 2021

We've been asked to review the Tornado smart contracts and circuits related to the upgrade
of the Tornado contract to a new one. We have identified only two significant issues.

B Major
BN Minor
B2 \\oderate

Findings

CVF-1 Minor Bad naming Opened
CVF-2 Minor Index missing Opened
CVF-3 Minor Improper approach Opened
CVF-4 Minor Improper approach Opened
CVF-5 Minor Improper approach Opened
CVF-6 Minor Improper access specifiers Opened
CVF-7 Minor Redundant code Opened
CVF-8 Moderate Underflow Opened
CVF-9 Minor Complicated code Opened
CVF-10 Minor Code duplication Opened
CVF-11 Minor Complicated code Opened
CVF-12 Minor Complicated code Opened
CVF-13 Minor Complicated code Opened
CVF-14 Minor Redundant code Opened
CVF-15 Minor Comment missing Opened
CVF-16 Minor Improper type Opened
CVF-17 Minor Redundant code Opened
CVF-18 Minor Improper approach Opened
CVF-19 Minor Redundant code Opened
CVF-20 Minor Improper approach Opened
CVF-21 Minor Redundant code Opened
CVF-22 Minor Complicated code Opened
CVF-23 Minor Dublicated code Opened
CVF-24 Minor Redundant code Opened
CVF-25 Minor Improper type Opened
CVF-26 Minor Redundant code Opened

CVF-27 Minor Event missing Opened

CVF-28 Minor Comment missing Opened
CVF-29 Minor Improper approach Opened
CVF-30 Minor Complicated code Opened
CVF-31 Minor Comment missing Opened
CVF-32 Minor Redundant code Opened
CVF-33 Minor Comment missing Opened
CVF-34 Minor Improper approach Opened
CVF-35 Minor Bad naming Opened
CVF-36 Minor Improper approach Opened
CVF-37 Minor Complicated code Opened
CVF-38 Minor Complicated code Opened
CVF-39 Minor Out of scope file Opened
CVF-40 Minor Complicated code Opened
CVF-41 Minor Bad naming Opened
CVF-42 Minor Bad naming Opened
CVF-43 Major Check missing Opened
CVF-44 Minor Improper approach Opened
CVF-45 Minor Improper approach Opened
CVF-46 Minor Redundant code Opened
CVF-47 Minor Improper access specifiers Opened
CVF-48 Minor Improper access specifiers Opened
CVF-49 Minor Bad naming Opened
CVF-50 Minor Improper type Opened
CVF-51 Minor Improper type Opened
CVF-52 Minor Event missing Opened
CVF-53 Minor Improper type Opened
CVF-54 Minor Bad naming Opened
CVF-55 Minor Redundant code Opened

CVF-56 Minor Improper approach Opened

TORNADO O

REVIEW ABDK

Contents

1 Document properties 7

2 Introduction 8
2.1 About ABDK, 8
2.2 About Customer 8
2.3 Disclaimer 8
2.4 Methodology 8

3 Detailed Results 10
3.1 CVF-1Bad naming 10
3.2 CVF-2Index missing 10
3.3 CVF-3 Improper approach 10
3.4 CVF-4 Improper approach 11
3.5 CVF-5Improper approach 11
3.6 CVF-6 Improper access specifiers, 11
3.7 CVF-7Redundantcode 12
3.8 CVF-8Underflow. 12
3.9 CVF-9 Complicated code 12
3.10 CVF-10 Code duplication 13
3.11 CVF-11 Complicated code 13
3.12 CVF-12 Complicated code 13
3.13 CVF-13 Complicated code 14
3.14 CVF-14 Redundant code 14
3.15 CVF-15 Comment missing 14
3.16 CVF-16 Improper type 15
3.17 CVF-17 Redundant code 15
3.18 CVF-18 Improper approach 15
3.19 CVF-19 Redundant code 16
3.20 CVF-20 Improper approach 16
3.21 CVF-21 Redundantcode 17
3.22 CVF-22 Complicated code, 17
3.23 CVF-23 Dublicated code 18
3.24 CVF-24 Redundantcode 18
3.25 CVF-25 Improper type 18
3.26 CVF-26 Redundantcode, 19
3.27 CVF-27 Event missing 19
3.28 CVF-28 Comment missing 19
3.29 CVF-29 Improper approach 20
3.30 CVF-30 Complicated code 20
3.31 CVF-31 Comment missing 20
3.32 CVF-32 Redundant code, 21
3.33 CVF-33 Comment missing 21
3.34 CVF-34 Improper approach, 21
3.35 CVF-35 Bad naming 22
3.36 CVF-36 Improper approach 22

TORNADO O
REVIEW ABDK
3.37 CVF-37 Complicated code 22
3.38 CVF-38 Complicated code 23
3.39 CVF-39 Out of scope file 24
3.40 CVF-40 Complicated code 25
3.41 CVF-41 Bad naming 25
342 CVF-42 Bad naming 26
3.43 CVF-43 Check missing 26
3.44 CVF-44 Improper approach 26
3.45 CVF-45 Improper approach, 27
3.46 CVF-46 Redundantcode, 27
3.47 CVF-47 Improper access specifiers 27
3.48 CVF-48 Improper access specifiers 28
3.49 CVF-49 Bad naming 28
3.50 CVF-50 Improper type 28
3.51 CVF-51 Improper type 29
3.52 CVF-52 Event missing 29
3.53 CVF-53 Improper type 29
3.54 CVF-54 Bad naming 30
3.55 CVF-55 Redundant code 30
3.56 CVF-56 Improper approach 30

TORNADO
REVIEW ABDK

1 Document properties

Version
0.1 Mar. D. Khovratovich Initial Draft
19, 2021
0.2 Mar. D. Khovratovich Minor revision
20, 2021
1.0 Mar. D. Khovratovich Release
20, 2021
Contact

D. Khovratovich

khovratovich@gmail.com

TORNADO
REVIEW ABDK

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting at
the customer request. We were given access to three repositories with the common tag
proposal_audit and reviewed the following files.

e Tornado-trees-proposal:
— Proposal.sol

e Tornado-anonymity-mining:
— TornadoProxy.sol

e Tornado-trees:

— TornadoTrees.sol
— BatchTreeUpdate.circom
— Utils.circom

The audit goal is a general review of the smart contract and circuit structure, critical/major
bugs detection and issuing the general recommendations.

2.1 About ABDK

ABDK Consulting, established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-authored
some widely known blockchain primitives like Poseidon hash function. The ABDK Audit
Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has conducted over 40 audits of
blockchain projects in Solidity, Rust, Circom, C++, JavaScript, and other languages.

2.2 About Customer

Tornado Cash is a decentralized Ethereum Mixer. ABDK had audited previous versions of
Tornado Cash, and is now reviewing certain changes only.

2.3 Disclaimer

Note that the performed audit represents current best practices and smart contract standards
which are relevant at the date of publication. After fixing the indicated issues the smart
contracts should be re-audited.

2.4 Methodology

The methodology is not a strict formal procedure, but rather a collection of methods and
tactics that combined differently and tuned for every particular project, depending on the
project structure and and used technologies, as well as on what the client is expecting from
the audit. In current audit we use:

https://github.com/tornadocash/tornado-trees-proposal
https://github.com/tornadocash/tornado-trees-proposal/blob/proposal_audit/contracts/Proposal.sol
https://github.com/tornadocash/tornado-anonymity-mining
https://github.com/tornadocash/tornado-anonymity-mining/blob/proposal_audit/contracts/TornadoProxy.sol
https://github.com/tornadocash/tornado-trees
https://github.com/tornadocash/tornado-trees/blob/proposal_audit/contracts/TornadoTrees.sol
https://github.com/tornadocash/tornado-trees/blob/proposal_audit/circuits/BatchTreeUpdate.circom
https://github.com/tornadocash/tornado-trees/blob/proposal_audit/circuits/Utils.circom
https://abdk.consulting
https://poseidon-hash.info
https://tornado.cash/

TORNADO
REVIEW ABDK

e General Code Assessment. The code is reviewed for clarity, consistency, style, and
for whether it follows code best practices applicable to the particular programming lan-
guage used. We check indentation, naming convention, commented code blocks, code
duplication, confusing names, confusing, irrelevant, or missing comments etc. At this
phase we also understand overall code structure.

e Entity Usage Analysis. Usages of various entities defined in the code are analysed.
This includes both: internal usages from other parts of the code as well as potential
external usages. We check that entities are defined in proper places and that their
visibility scopes and access levels are relevant. At this phase we understand overall
system architecture and how different parts of the code are related to each other.

e Access Control Analysis. For those entities, that could be accessed externally, access
control measures are analysed. We check that access control is relevant and is done
properly. At this phase we understand user roles and permissions, as well as what assets
the system ought to protect.

e Code Logic Analysis. The code logic of particular functions is analysed for correctness
and efficiency. We check that code actually does what it is supposed to do, that
algorithms are optimal and correct, and that proper data types are used. We also check
that external libraries used in the code are up to date and relevant to the tasks they solve
in the code. At this phase we also understand data structures used and the purposes
they are used for.

23

37

73

80

TORNADO
REVIEW ABDK

3 Detailed Results
3.1 CVF-1 Bad naming

e Severity Minor e Status Opened

e Category Bad naming e Source TornadoTrees.sol

Recommendation The suffix 'SIZE' is ambiguous. Better call it 'IN_BYTES'".

Listing 1: Bad naming

uint256 public constant ITEM SIZE = 32 + 20 + 4;
uint256 public constant BYTES SIZE = 32 + 32 + 4 + CHUNK_SIZE x
— ITEM SIZE;

3.2 CVF-2 Index missing

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Recommendation The "instance" parameters should be indexed.

Listing 2: Index missing

event DepositData(address instance, bytes32 indexed hash,
< uint256 block, uint256 index);

event WithdrawalData(address instance, bytes32 indexed hash,
< uint256 block, uint256 index);

3.3 CVF-3 Improper approach

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Description These strings are used multiple times to calculated 4-byte function selectors.
Recommendation Consider passing precomputed selectors instead of full signatures.

Listing 3: Improper approach
"deposits(uint256)",

"withdrawals (uint256)",

92

98

106

106

TORNADO
REVIEW ABDK

3.4 CVF-4 Improper approach

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Recommendation It is probably safe to just round 'lastDepositLeaf’ up to the nearest multiple
of 'CHUNK SIZE'.

Listing 4: Improper approach

require(lastDepositLeaf % CHUNK SIZE = 0, "Incorrect
< TornadoTrees state");

require (lastWithdrawallLeaf % CHUNK SIZE = 0, "lIncorrect
< TornadoTrees state");
3.5 CVF-5 Improper approach

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Recommendation This function could have been made cheaper if the caller also provides the
correct length and the function just has to verify it. Maybe it is not possible if the function is
called automatically and can not accept parameters.

Listing 5: Improper approach

function findArrayLength (

3.6 CVF-6 Improper access specifiers

e Severity Minor e Status Opened

e Category Bad datatype e Source TornadoTrees.sol

Recommendation This function should be made internal.

Listing 6: Improper access specifiers

function findArrayLength(

112

118

120

TORNADO
REVIEW ABDK

3.7 CVF-7 Redundant code

e Severity Minor e Status Opened

e Category Procedural e Source TornadoTrees.sol
(proposal _audit)

Description It is a bad practice to leave test-only stuff in a production code. If you want this
function to just return 0 in code or all tests, just inherit another smart contract from this smart
contract, override the "findArrayLength" function, and test this inherited smart contract.

Listing 7: Redundant code

if (_from=0&& step = 0) {
return 0; // for tests

-

3.8 CVF-8 Underflow

e Severity Moderate e Status Opened

e Category Overflow/Underflow e Source TornadoTrees.sol

Description " from - step" may cause underflow in case the " step" value is greater then
the remaining number of elements.

Listing 8: Underflow

_from = direction 7 from 4+ _step : from — step;

3.9 CVF-9 Complicated code

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Recommendation These lines could be rewritten as: "(uint low, uint high) = direction 7
(_from - step, from) : (_from, from 4+ _step);".

Listing 9: Complicated code

uint256 high = direction ? from : from + _step;
uint256 low = direction 7 from — step : _from;

122

131

142

146

149

TORNADO
REVIEW ABDK

3.10 CVF-10 Code duplication

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Recommendation This code duplication could be avoided by calculating mid in the beginning
of the loop body.

Listing 10: Code duplication
uint256 mid = (high + low) / 2;

mid = (low + high) / 2;

3.11 CVF-11 Complicated code

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Description The signature is hashed on every invocation.
Recommendation Consider hashing it once and reusing.

Listing 11: Complicated code

(success,) = address(tornadoTreesV1).staticcall{ gas: 2500 }(
< abi.encodeWithSignature(type, index));

3.12 CVF-12 Complicated code

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Recommendation These two lines could be combined as: "uint256 depositsLength =
depositsLength++";

Listing 12: Complicated code
uint256 depositsLength = depositsLength;

depositsLength = depositsLength + 1;

153

156

155

TORNADO
REVIEW ABDK

3.13 CVF-13 Complicated code

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Recommendation These lives could be combined as "uint256 withdrawalsLength = with-
drawalsLength++;".

Listing 13: Complicated code

uint256 withdrawalsLength = withdrawalsLength;

withdrawalsLength = withdrawalsLength + 1;

3.14 CVF-14 Redundant code

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Description Emitting block number is probably redundant as it can be easily obtained from
the event metadata.

Listing 14: Redundant code

emit WithdrawalData(instance, _ nullifierHash , blockNumber(),
< _withdrawalsLength);

3.15 CVF-15 Comment missing

e Severity Minor e Status Opened

e Category Documentation e Source TornadoTrees.sol

Recommendation There must be a comment on what exactly is proven.

Listing 15: Comment missing

160 bytes calldata _ proof,

161

162

164

207

209

168

TORNADO
REVIEW ABDK

3.16 CVF-16 Improper type

e Severity Minor e Status Opened

e Category Bad datatype e Source TornadoTrees.sol

Recommendation This can be type uint256.

Listing 16: Improper type

bytes32 argsHash,

3.17 CVF-17 Redundant code

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol
(proposal _audit)

Description These parameters are redundant, as the contract already knows the current root
and the path indices could be derived from the offset already known to the smart contract.

Listing 17: Redundant code

bytes32 currentRoot,
uint32 pathlindices ,
bytes32 currentRoot,

uint256 _ pathlindices,

3.18 CVF-18 Improper approach

e Severity Minor e Status Opened

e Category Unclear behavior e Source TornadoTrees.sol

Description This probably can never happen as long as the proof verifies that the new root
is an update with a non-zero entry and thus can not equal a previous root. If this check is
just a sanity check, then a range check for new root should be there too.

Listing 18: Improper approach

require (_newRoot != previousDepositRoot, "Outdated deposit root
s II);

168

213

181

188

227

235

TORNADO
REVIEW ABDK

3.19 CVF-19 Redundant code

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Description This check looks redundant.

Listing 19: Redundant code

require (_newRoot != previousDepositRoot, "Outdated deposit root
s II).
require (_newRoot != previousWithdrawalRoot, "Outdated withdrawal

< root");

3.20 CVF-20 Improper approach

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Description The ability to handle V1 deposits and withdrawals is needed for a few first chunks
only, but the corresponding logic will consume extra gas forever. One solution would be to
implement two versions of the "updateDepositsTree" /"updateWithdrawalsTree" functions:
one that does support V1 deposits/withdrawals, and another that doesn't support them and
just ensures that all the V1' deposits/withdrawals are already processed. Another solution
would be to allocate in memory an array of 256 bytes32 values, copy there as much as 256
remaining V1 deposits/withdrawals. Then, if the array is not full yet, fill the rest with V2
deposits/withdrawals deleting them from the storage. Then perform the main loop over this
in-memory array rather then on in-storage data structures.

Listing 20: Improper approach

bytes32 deposit = offset + i >= depositsV1lLength 7 deposits]|
< offset + i] : tornadoTreesV1.deposits(offset + i);

if (offset + i >= depositsV1Length) {

bytes32 withdrawal = offset + i >= withdrawalsV1Length 7
— withdrawals[offset + i] : tornadoTreesV1.withdrawals(
< offset + i);

if (offset + i >= withdrawalsV1Length) {

16

184

231

199
200

246

TORNADO
REVIEW ABDK

3.21 CVF-21 Redundant code

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Description The value "add (data, mul (ITEM _SIZE, i))" is calculated three times on every
iteration.

Recommendation Consider using a single pointer initialized before the loop to the value "add
(data, 0x64)" and incremented by "ITEM SIZE" at the end of every loop iteration.

Listing 21: Redundant code

mstore (add (add(data, mul(ITEM SIZE, i)), 0x7c), blockNumber)
mstore (add (add(data, mul(ITEM_SIZE, i)), 0x78), instance)
mstore (add (add(data, mul(ITEM_SIZE, i)), 0x64), hash)
mstore (add (add(data, mul(ITEM_SIZE, i)), 0x7c), blockNumber)
mstore (add (add(data, mul(ITEM SIZE, i)), 0x78), instance)
mstore (add (add(data, mul(ITEM _SIZE, i)), 0x64), hash)

3.22 CVF-22 Complicated code

e Severity Minor e Status Opened
e Category Suboptimal e Source TornadoTrees.sol
Description Moving the current root into the previous root and assigning a new value to the

current root is suboptimal. More efficient way would be to have two variables: 'oddRoot’ and
'evenRoo’ whose roles would flip every time new chunk was validated.

Listing 22: Complicated code

previousDepositRoot = _currentRoot;
depositRoot = newRoot;
previousWithdrawalRoot = currentRoot;
withdrawalRoot = newRoot;

17

204

216

251

TORNADO
REVIEW ABDK

3.23 CVF-23 Dublicated code

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Description This function’s code is almost a duplicate of 'updateDepositTree'.
Recommendation Consider extracting the shared code to some utility.

Listing 23: Dublicated code

function updateWithdrawalTree(

3.24 CVF-24 Redundant code

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Description There is no corresponding check in 'updateDepositsTree'. Probable this check
is redundant here as well.

Listing 24: Redundant code

require (uint256 (_newRoot) < SNARK_FIELD, "Proposed root is out
< of range");

3.25 CVF-25 Improper type

e Severity Minor e Status Opened

e Category Bad datatype e Source TornadoTrees.sol

Description Does this function have to be public?

Listing 25: Improper type

function validateRoots(bytes32 depositRoot, bytes32
< _withdrawalRoot) public view {

256

264

272

276

TORNADO
REVIEW ABDK

3.26 CVF-26 Redundant code
e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Description These functions are redundant, as all the storage variables used in them are
already public.

Listing 26: Redundant code

function getRegisteredDeposits() external view returns (bytes32
< [] memory deposits) {

function getRegisteredWithdrawals() external view returns (
< bytes32[] memory withdrawals) {

3.27 CVF-27 Event missing

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoTrees.sol

Description This function should probably log some event.

Listing 27: Event missing

function setTornadoProxyContract(address _tornadoProxy) external
< onlyGovernance {

function setVerifierContract(IBatchTreeUpdateVerifier
< treeUpdateVerifier) external onlyGovernance {

3.28 CVF-28 Comment missing

e Severity Minor e Status Opened

e Category Documentation e Source BatchTreeUpdate.circom

Recommendation Some comment on the functionality and expected input range is recom-
mended.

Listing 28: Comment missing

TreeLayer(height) {

19

10

TORNADO
REVIEW ABDK

3.29 CVF-29 Improper approach

e Severity Minor e Status Opened

e Category Suboptimal e Source BatchTreeUpdate.circom

Recommendation This template should be in its own file named "TreelLayer.circom".

Listing 29: Improper approach
TreeLayer(height) {

3.30 CVF-30 Complicated code

e Severity Minor e Status Opened

e Category Suboptimal e Source BatchTreeUpdate.circom

Recommendation Consider extracting "1 « height" into a variable to make the code easier
to read.

Listing 30: Complicated code

signal input ins[l << (height + 1)];
signal output outs[l << height];

component hash[l << height];
for(var i = 0; i < (1 << height); i++) {

3.31 CVF-31 Comment missing

e Severity Minor e Status Opened

e Category Documentation e Source BatchTreeUpdate.circom

Recommendation Some comment on the admissible input range is recommended.

Listing 31: Comment missing

21 BatchTreeUpdate(levels , batchlLevels, zeroBatchlLeaf) {

7

86

90

4

TORNADO
REVIEW ABDK

3.32 CVF-32 Redundant code

e Severity Minor e Status Opened

e Category Suboptimal e Source BatchTreeUpdate.circom

Description As everything is anyway hardcoded in the same file, the function 'nthZero’ is
redundant.

Recommendation Just use a hardcoded value of 'nthZero(8)’ to initialize the "MatchTree-
Update" template.

Listing 32: Redundant code
nthZero(n) {

if (n = 8) return

— 172786683236526648814202097739959887681959985746296145933951624631

—

CHUNK TREE HEIGHT = 8
main = BatchTreeUpdate (20, CHUNK TREE HEIGHT, nthZero(
< CHUNK_ TREE HEIGHT))

3.33 CVF-33 Comment missing

e Severity Minor e Status Opened

e Category Documentation e Source Utils.circom

Recommendation Some comment on the functionality of the template would be helpful.

Listing 33: Comment missing

TreeUpdateArgsHasher(nLeaves) {

3.34 CVF-34 Improper approach

e Severity Minor e Status Opened

e Category Suboptimal e Source Utils.circom

Recommendation This template should be in a file named "TreeUpdateArgsHasher.circom"
to make code navigation easier.

Listing 34: Improper approach

TreeUpdateArgsHasher(nLeaves) {

13

14

29
30

TORNADO
REVIEW ABDK

3.35 CVF-35 Bad naming

e Severity Minor e Status Opened

e Category Bad naming e Source Utils.circom

Recommendation For readability, constants are usually named in CAPS.

Listing 35: Bad naming
var header = 256 4+ 256 + 32;

3.36 CVF-36 Improper approach

e Severity Minor e Status Opened

e Category Suboptimal e Source Utils.circom

Recommendation Should be 256 + 160 + 32 to reflect the actual order of fields in a leaf.

Listing 36: Improper approach
var bitsPerLeaf = 160 4+ 256 + 32;

3.37 CVF-37 Complicated code

e Severity Minor e Status Opened
e Category Suboptimal e Source Utils.circom
Description This pattern repeats several times in the code.

Recommendation Consider implementing it as a template. Inlining it every time is error-
prone, as it is hard to notice a mistake in an index.

Listing 37: Complicated code

hasher.in [0] <== 0;
hasher.in[1] <== 0;
for(var i = 0; i < 254; i++) {
hasher.in[i + 2] <== bitsOldRoot.out[253 — i];

-

29
30

32

34

37

40

50

53

56

59

TORNADO
REVIEW ABDK

3.38 CVF-38 Complicated code

e Severity Minor e Status Opened

e Category Suboptimal e Source Utils.circom

Recommendation Using a single counter for the number of data bits already populated would
make code less error-prone and easier to read.

Listing 38: Complicated code

hasher.in [0] <== 0;
hasher.in[1] <== 0;

hasher.in[i + 2] <== bitsOldRoot.out[253 — i];

hasher.in[256] <== 0;
hasher.in[257] <== 0;

hasher.in[i + 258] <== bitsNewRoot.out[253 — i];
hasher.in[i + 512] <== bitsPathlndices.out[31 — i];

hasher.in[header + leaf x bitsPerLeaf + 0] <= 0;
hasher.in[header + leaf x bitsPerLeaf + 1] <= 0;

hasher.in[header + leaf x bitsPerLeaf + i + 2] <=
< bitsHash[leaf].out[253 — i];

hasher.in[header + leaf % bitsPerLeaf + i + 256] <==
— bitslnstance[leaf].out[159 — i];

hasher.in[header + leaf % bitsPerlLeaf + i + 416] <=
— bitsBlock[leaf].out[31 — i];

23

25

30

TORNADO
REVIEW ABDK

3.39 CVF-39 Out of scope file

e Severity Minor e Status Opened

e Category Procedural e Source Proposal.sol

Description We did not review these files.

Listing 39: Out of scope file

"tornado—trees/contracts/interfaces/ITornadoTreesV1.sol";

"tornado—trees/contracts/interfaces/IBatchTreeUpdateVerifier.sol
s ||;

"tornado—trees/contracts/TornadoTrees.sol";

"tornado—trees/contracts/AdminUpgradeableProxy.sol";

"tornado—anonymity—mining/contracts/TornadoProxy.sol";

"./interfaces/ITornadoProxyV1l.sol";

"./interfaces/IMiner.sol";

"./verifiers/BatchTreeUpdateVerifier.sol";

24

35

102

112

TORNADO
REVIEW ABDK

3.40 CVF-40 Complicated code

e Severity Minor e Status Opened

e Category Procedural e Source Proposal.sol

Recommendation Consider passing all these addresses as constructor parameters and saving
them into immutable variables (that are cheaper than storage variables). This would make it
possible to test the code in testnet where addresses are different.

Listing 40: Complicated code

ITornadoTreesV1 public constant tornadoTreesV1l = ITornadoTreesV1
<> (0x43a3bE4Ae954d9869836702AFd10393D3a7Ea417);

ITornadoProxyV1l public constant tornadoProxyV1l = ITornadoProxyV1
— (0x905b63Fff465B9fFBF41DeA908CEb12478ec7601);

0x12D66f87A04A9E220743712cE6d9bB1B5616B8Fc)
0x47CE0C6eD5B0Ce3d3A51fdb1C52DC66a7c3¢c2936) ,
0x910Cbd523D972eb0a6f4cAe4618aD62622b39DbF)
0xA160cdAB225685dA1d56aa342Ad8841c3b53f291)

address
address
address
address

0xD4B88Df4D29F5CedD6857912842cff3b20C8Cfa3)
0xFD8610d20aA15b7B2E3Be39B396a1bC3516¢7144) ,
0x22aaA7720ddd5388A3c0A3333430953C68f1849b)
0xBA214C1c1928a32Bffe790263E38B4Af9bFCD659) ,
0xd96f2B1c14Db8458374d9Aca76E26c3D18364307) ,
0x4736dCf1b7A3d580672CcE6E7c65cd5¢cc9cFBag9D)
0x169AD27A470D064DEDE56a2D3ff727986b15D52B) ,
0x0836222F2B2B24A3F36f98668Ed8F0B38D1a872f)

address
address
address
address
address
address
address
address

e e N N W e N N NSNS

3.41 CVF-41 Bad naming

e Severity Minor e Status Opened

e Category Bad naming e Source Proposal.sol

Recommendation The name is ambiguous, consider using a more descriptive name.

Listing 41: Bad naming

39 event Deployed(address contract);

25

39

59

68

72

76

81

TORNADO
REVIEW ABDK

3.42 CVF-42 Bad naming

e Severity Minor e Status Opened

e Category Bad naming e Source Proposal.sol

Recommendation Events are usually named via nouns, such as "Deployment" or "Contract".

Listing 42: Bad naming

event Deployed(address _contract);

3.43 CVF-43 Check missing

e Severity Major e Status Opened

e Category Suboptimal e Source Proposal.sol

Description This function can be called multiple times.
Recommendation Consider using some protection.

Listing 43: Check missing

function executeProposal() public {

3.44 CVF-44 Improper approach

e Severity Minor e Status Opened

e Category Procedural e Source Proposal.sol

Description The same event is emitted 4 times with distinct parameters and probably different
semantics. It would make more sense to have four different events or one with four parameters.

Listing 44: Improper approach

emit Deployed(address(verifier));

emit Deployed(address(tornadoTreesImpl));

emit Deployed(address(upgradeableProxy));
((

emit Deployed(address(proxy));

68

72

76

81

84

90

TORNADO
REVIEW ABDK

3.45 CVF-45 Improper approach

e Severity Minor e Status Opened

e Category Procedural e Source Proposal.sol

Description The same event is used to log deployments of different components. This makes
is hard to know what address belongs to what component.

Recommendation Consider either declaring a single event with four type-safe parameters,
or four different events, each having one type safe-parameter, where for different events the
parameter types are different.

Listing 45: Improper approach
emit Deployed(address(verifier));

(
emit Deployed(address(tornadoTreesIimpl));
emit Deployed(address(upgradeableProxy));
((

emit Deployed(address(proxy));

3.46 CVF-46 Redundant code

e Severity Minor e Status Opened

e Category Suboptimal e Source Proposal.sol

Recommendation The type case to '|BatchTreeUpdateVerifier' is redundant.

Listing 46: Redundant code

tornadoTrees. initialize (address(proxy), IBatchTreeUpdateVerifier
< (address(verifier)));

3.47 CVF-47 Improper access specifiers

e Severity Minor e Status Opened

e Category Bad datatype e Source Proposal.sol

Recommendation This function doesn't have to be public. It also could be made pure.

Listing 47: Improper access specifiers

function getSearchParams() public view returns (TornadoTrees.
< SearchParams memory) {

100

110

123

16

18

TORNADO
REVIEW ABDK

3.48 CVF-48 Improper access specifiers

e Severity Minor e Status Opened

e Category Bad datatype e Source Proposal.sol

Recommendation These functions don't have to be public.

Listing 48: Improper access specifiers

function getEthInstances() public pure returns (address[4]
< memory) {

function getErc20lnstances() public pure returns (address[8]
< memory) {

function getlinstances() public pure returns (TornadoProxy.
< Instance[] memory instances) {

3.49 CVF-49 Bad naming

e Severity Minor e Status Opened

e Category Bad naming e Source TornadoProxy.sol

Recommendation Enum constants are usually named IN_CAPITAL CASE.

Listing 49: Bad naming

num InstanceState { Disabled, Enabled, Mineable }

3.50 CVF-50 Improper type

e Severity Minor e Status Opened

e Category Bad datatype e Source TornadoProxy.sol

Recommendation The type of this field should be "ITornadolnstance".

Listing 50: Improper type

address instance;

32

76

80

80

TORNADO
REVIEW ABDK

3.51 CVF-51 Improper type

e Severity Minor e Status Opened

e Category Bad datatype e Source TornadoProxy.sol
(proposal _audit)

Recommendation Should be 'ITornadoTrees'.

Listing 51: Improper type

ddress _tornadoTrees,

3.62 CVF-52 Event missing

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoProxy.sol

Recommendation This function should probably emit some event.

Listing 52: Event missing

unction updatelnstance(lTornadolnstance _instance, InstanceState
< state) external onlyGovernance {
unction setTornadoTreesContract(address instance) external

< onlyGovernance {

3.563 CVF-53 Improper type

e Severity Minor e Status Opened

e Category Bad datatype e Source TornadoProxy.sol

Recommendation The type should be 'ITornadoTrees'.

Listing 53: Improper type

unction setTornadoTreesContract(address _instance) external
— onlyGovernance {

88

95

100

96

TORNADO
REVIEW ABDK

3.564 CVF-54 Bad naming

e Severity Minor e Status Opened

e Category Bad naming e Source TornadoProxy.sol

Recommendation The 'amount’ would be a better name.

Listing 54: Bad naming

int256 _ balance

3.55 CVF-55 Redundant code

e Severity Minor e Status Opened

e Category Suboptimal e Source TornadoProxy.sol

Recommendation Treating zero balance as "all" is redundant, as _balance=2256-1 would
basically do the same.

Listing 55: Redundant code

int256 balance = balance = 0 7 totalBalance : Math.min(
< totalBalance, balance);

int256 balance = balance = 0 7 totalBalance : Math.min(
< totalBalance, _balance);

3.56 CVF-56 Improper approach

e Severity Minor e Status Opened

e Category Procedural e Source TornadoProxy.sol

Recommendation Consider using "send" instead of "transfer", as using transfer is discour-
aged nowadays.

Listing 56: Improper approach

to.transfer(balance);

	Document properties
	Introduction
	About ABDK
	About Customer
	Disclaimer
	Methodology

	Detailed Results
	CVF-1 Bad naming
	CVF-2 Index missing
	CVF-3 Improper approach
	CVF-4 Improper approach
	CVF-5 Improper approach
	CVF-6 Improper access specifiers
	CVF-7 Redundant code
	CVF-8 Underflow
	CVF-9 Complicated code
	CVF-10 Code duplication
	CVF-11 Complicated code
	CVF-12 Complicated code
	CVF-13 Complicated code
	CVF-14 Redundant code
	CVF-15 Comment missing
	CVF-16 Improper type
	CVF-17 Redundant code
	CVF-18 Improper approach
	CVF-19 Redundant code
	CVF-20 Improper approach
	CVF-21 Redundant code
	CVF-22 Complicated code
	CVF-23 Dublicated code
	CVF-24 Redundant code
	CVF-25 Improper type
	CVF-26 Redundant code
	CVF-27 Event missing
	CVF-28 Comment missing
	CVF-29 Improper approach
	CVF-30 Complicated code
	CVF-31 Comment missing
	CVF-32 Redundant code
	CVF-33 Comment missing
	CVF-34 Improper approach
	CVF-35 Bad naming
	CVF-36 Improper approach
	CVF-37 Complicated code
	CVF-38 Complicated code
	CVF-39 Out of scope file
	CVF-40 Complicated code
	CVF-41 Bad naming
	CVF-42 Bad naming
	CVF-43 Check missing
	CVF-44 Improper approach
	CVF-45 Improper approach
	CVF-46 Redundant code
	CVF-47 Improper access specifiers
	CVF-48 Improper access specifiers
	CVF-49 Bad naming
	CVF-50 Improper type
	CVF-51 Improper type
	CVF-52 Event missing
	CVF-53 Improper type
	CVF-54 Bad naming
	CVF-55 Redundant code
	CVF-56 Improper approach

